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It is shown that there exists a phase transition associated with a singularity 
of the free energy for a model such that for all temperatures the equilibrium 
state is unique and thus stable with respect to boundary perturbations. 
It is also shown on this model that there exist phase transitions without 
symmetry breakdown, which can be related to a phase transition with 
symmetry breakdown on an equivalent model. 

KEY W O R D S :  Phase transition; unicity of equilibrium states, 

Several definitions have been introduced in statistical mechanics to charac- 
terize a phase transition. (1) In  particular, by  analogy with thermodynamics ,  
one can define a phase transition by the singularities o f  the free energy as a 
function o f  the thermodynamic  variables; on the other hand, to prove the 
existence o f  a phase transition by  means o f  Peierls' a rgument  (~) or  its natural  
generalization, (2) one defines a phase transit ion by means o f  the instability 
o f  the state with respect to boundary  perturbation,  i.e., nonuniqueness o f  the 
equilibrium state. It  has been suspected (1) that  these two definitions are 
closely related and the examples studied so far have confirmed this idea. 
In  the following, we shall give an explicit example for  which the two defi- 
nitions are not equivalent. We shall show that  it is possible to have a phase 
transit ion associated with a singularity o f  the free energy while the equilib- 
r ium state is unique at all temperatures.  
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The model we consider is a spin-} classical lattice system defined on a 
square lattice with an external field H > 0 and an alternating four-body 
force J4, which is infinite. It is therefore defined by {s162 ~'}, where the lattice 
s is given by ~ = Z 2, and the family of bonds ~ '  is given by ~ '  -- ~ u ~o~, 
with ~ the set of finite bonds defined by the one-point subset of ~ (external 
field) and ~| the set of infinite bonds defined by the four-point subsets of 
~r represented by the hatched squares in Fig. 1. 

The interactions are then given by the function J on 5~' defined by 

J ( x ) = H  for all x E ~ 2 =  

J(B|  = J4 = +oo for all Bo~ ~ ~ o  

Introducing the function K on ~ '  defined by 

K(x)  = ( 1 / k T ) J ( x )  = h, K(Boo) = (1/kT)J(B~o) = +oo 

we find that the (reduced) partition function of the finite system {A, ~A'}, 
A ~ Z 2, ~ a '  = ~ '  C~ ~(A),  is given by 

O~a,~,-- T r e x p #  E K(B) [aB-  1]'~ = E C(Y)z ' " ;  z--- e-2h 
~. B e t A "  ) Y ~ A 

where for any X c A the function ~x = 1-Ix~x ax is the product of the spin 
variables belonging to the set X and IX I denotes the cardinality of X; C(Y) 
is the function which is one if Yis an admissible configuration, i.e., a~=(Y) = 
+ 1 for all B| e ~o~,~ and is zero otherwise, ~(A)  = {X; X ~ A}. 

It has been shown r that this model is an H T - L T  dual for the Ising 
model with two-body forces, which yields 

)6,,  /at,. , ~. ".. 
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Fig. 1. The model (e) and its LT-LT dual (A). h =~SH> 0, K4= f lJ4- ' -+m.  

d:{x} ~ B** = {1", 2"}, J=* -= H. N' = {{�9 { .~ :}} ,  N* = {{A---A}}. 
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w h e r e f '  is the (reduced) free energy of the model a n d f  '<~ing) is the (reduced) 
free energy of the Ising model. We therefore conclude that there exists a 
phase transition at To = T~ =in~ associated with a singularity of  the free 
energy; moreover, the specific heat and susceptibility are proportional  and 
both diverge at Tc with the indices of  the Ising model; on the other hand, the 
magnetization is continuous. <4) 

We shall now show that there exists a unique equilibrium state invariant 
under some subgroups ~- of  the translation group 2 2 such that 272/~ - is finite. 
However, since there exist several definitions of the "equilibrium states of  an 
infinite system," which have been shown to be equivalent only in the case 
where all interactions are finite (5) we shall show below that the equilibrium 
state is unique if one adopts any of the following definitions. 

A state w is an equilibrium state if: 

D.I: It  is a solution of the equation 

~,[.~1 = o~[~x.=.] 
~o[ex] = ~["x tanh(EB~r(z~ K(B)~)]  

for all X E ~ ( ~ ) ,  B~ e ~ |  and for all Z e ~ i ( ~ )  such that Z is 
admissible, I X n  Z I is odd, and ~,(Z) = { B e ~ ;  eB(Z) = - I}; as 
usual ~ i ( ~ )  denotes the family of finite subsets of ~ .  

D.2: It  is a convex combination of thermodynamic limit of Gibbs states 
with specified boundary conditions. 

D.3: It is a tangent plane to the graph of the free energy. 

To establish this results, we consider an L T - L T  duality transformation 
restricted to finite interactions, (6> which is defined in the following manner. 

Let F} ~) be the subgroup of ~ ( ~ )  defined by the element 7(X) = {B e ~ ;  
(r~(X) = - 1} with X admissible and finite. The model {~*,  ~*} with finite 
interactions only is called an L T - L T  dual restricted to finite bonds for 
{~ ,  N'} if there exists a bijection d: ~ -+ N* such that the induced mapping 
on subsets of  ~ yields a bijection of r} ~) onto Fi* with K*(B*) = K(B). 
For  our model, we shall take the transformation defined by the mapping 
d:~ ' - -> ~* ,  which associates to each point x e 7/2 [considered as bonds, i.e., 
elements of~i (22)]  a pair of  points B~* = d{x) on the dual lattice Z ~' defined 
by the center of the square for which K~ = 0 (cf. Fig. 1). 

For  the model we consider, the group P}~) is generated by the four- 
point subsets of  22 on white squares and those generators are mapped by the 
mapping d onto the four bonds containing the center of  this square (see 
Fig. 2). We thus have a bijection between generators of  P~ ) and the generators 
of  the group F~* for the Ising model ; it then follows that the Ising model with 
nearest neighbor interaction is an L T - L T  dual restricted to finite bonds for 
our model. 
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Fig. 2 

1. If we adopt the definition of equilibrium states given by Eq. (1), we 
can use the result ~6~ that there exists a bijection between the equilibrium 
state ~o invariant under the internal symmetry group 5e' and the equilibrium 
state ~o* invariant under 5 p* for the LT-LT  dual; moreover, this bijection is 
given by 

co 1--[ all (2) [B~e orB] = ~ o * [ ~  ~a~] for /3~ #~(,~) 

With the LT- LT  duality transformation considered, we then have that, for 
any equilibrium state ~o, there exists a symmetric state r *(ISing~ of the Ising 
model, such that 

�9 ~ i . ~  [1-1 ] ~ = r176 I aa~ (3) 
k x e X  

Since for all temperatures there exists a unique symmetric state of the two- 
dimensional Ising model invariant under translations, (7~ we conclude that for 
all temperatures there exists a unique equilibrium state of  our model in- 
variant under some subgroup ~- of the translation group such that 2~2/~ - is 
finite. 

2. Let us then consider the definition given by the thermodynamic 
limit of a Gibbs state. The finite system A with boundary conditions Y such 
that aB(Y) = + 1 for any B for which K4(B) = + ~ (compatibility of the 
boundary conditions with the constraints given by K~ = + oo) is defined by 
the interactions 

h~ = h Vx ~ A 
hx = - o r  Vx ~ Y/[A ~ Y] 
h x = + O V  V ~ 6 A u  Y 

In this case, the L T - L T  dual model is an Ising model with boundary con- 
ditions defined by J2* = +__ ov outside A* where 1-[s*~* J*, > 0 for any 
closed graph ~*. 

It then follows that there are exactly two boundary conditions on the 
L T-LT  dual system, boundary conditions defined by Y* and 2~2"/Y*; 
moreover, these boundary conditions are equivalent for the even point corre- 
lation functions. 
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We thus conclude that to any Gibbs state of the finite system A with 
boundary conditions Y there corresponds on the dual model a Gibbs state 
with boundary conditions Y* such that 

<ax)(a,r) = (~l~x ~ax ) for all X c A  
(A* ,Y*)  

Again the proof  is concluded by means of the result of Ref. 7. 
3. Finally we can use one of  the proofs of Ref. 7 to conclude that for 

any perturbation defined by R ~ ~s(7/2) and 

Q'(A, h, A) = x:A ~ e(X)z 'X'exp[-A~ (r~aR)(X)] 

the perturbed free energyf'(h, A) is differentiable at A = 0. From this result 
one can then prove that there exists a unique equilibrium state whose sym- 
metry group is the symmetry group of the interactions. 

In conclusion, we have shown that although there exists a phase transi- 
tion associated with a singularity of the free energy, the equilibrium state is 
unique at all temperatures and is given by Eq. (3). Moreover, this phase 
transition, which is not associated with a symmetry breakdown, can be re- 
lated to a phase transition with a symmetry breakdown on an equivalent 
model. 

We conclude with a few remarks concerning the state and the nature 
of the phase transition. 

1. Using the L T - L T  duality transformation, one can show that the state 
co is not invariant under the translation group 27 2 but only under the transla- 
tion group of the interaction. 

2. The phase transition can be characterized by the long-range order 
parameter (r 

V = lira co(a1 --- a~) 
i$... co 

such that 

In fact 

7 = 0 ,  T ~  

7 > 0 ,  T < ~  

~ a( T) = [mZ~ing r T ~12 
1. J 2 = h t ,  ) ' J  

3. The phase transition can be characterized by a "'local" parameter 
~(T) which varies continuously and is such that/~(T) = 0 for T ~< Tc and 
•(T) > 0 for T > To. In fact, 

~,~(T) = lira /,~-2~: (~)~,o\ ~ r T * ~  . ~  �9 - ~ ( ~ , ~ )  - , . . ~ = ~  , (4) 
K4..-~. + ao 
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Fig. 3. Generator of F} ~) and its image under the duality transformation. 

where T* is defined by e(-2e*J2 ) = t anh  flJ2. (See Fig.  3.) I t  should be 
not iced  that /xH(T)  is not  a local  o rder  p a r a m e t e r  in the usual  sense, since (i) 

tLH(T) = 0, T ~< T~ 

/zH(T ) > 0, T > Tc 

and  (ii) 

t~n(T) - l im (2;~) -112 {0)1,a=0(~B,) - oJr ,a(~,)} 
;t&0 

where mr, a is the equi l ibr ium state associa ted  with the free b o u n d a r y  con- 
d i t ion  and t anh  2K4 = 1 - ;~. On  the other  hand,  for  a s t andard  order  

p a r a m e t e r  such as the  spon taneous  magnet iza t ion ,  we have 

- m s 2 ( T )  = l im {0);,h=o(~) --  ws,~(~x)} 
h~0 

4. It  can be easily seen tha t  our  mode l  is equivalent  to  an eight-vertex 

model  wi th  weights 0)1 = 0)yl and  0)~ . . . . .  0) 8 = 1 and the behav ior  
o f  the local  p a r a m e t e r  t~n = /x~/(T) is ana logous  to  the curve for  the vert ical  

po la r i za t ion  o f  the  F mode l  with respect  to the  vert ical  field? 8) 
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